LLMs
Clean & curate your data with LLMs
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
- Suite of tools for data processing using LLMs including categorization, transformation, and extraction
- Validation of LLM outputs
- Batch processing for token savings
- Retry logic with exponential backoff for handling rate limits and
databonsai • GitHub - databonsai/databonsai: clean & curate your data with LLMs.
Principles for growable tools
There are three critical pieces to building a tool that can grow around its users over time.
There are three critical pieces to building a tool that can grow around its users over time.
- Design around play . Sometimes I call this design around experimentation . Using the tool for day-to-day work should involve playing and experimenting with what’s possible with the tool. Whether that’s writing small programs to
Beyond customization: build tools that grow with us | thesephist.com
We went to OpenAI's office in San Francisco yesterday to ask them all the questions we had on Quivr (YC W24), here is what we learned:
1. Their office is super nice & you can eat damn good croissant in SF!
2. We can expect GPT 3.5 & 4 price to keep going down
3. A lot of people are using the Assistants API to build their use cases
4. It costs 2M$ to... See more
1. Their office is super nice & you can eat damn good croissant in SF!
2. We can expect GPT 3.5 & 4 price to keep going down
3. A lot of people are using the Assistants API to build their use cases
4. It costs 2M$ to... See more
Paul Venuto • feed updates
Google Deepmind used similar idea to make LLMs faster in Accelerating Large Language Model Decoding with Speculative Sampling. Their algorithm uses a smaller draft model to make initial guesses and a larger primary model to validate them. If the draft often guesses right, operations become faster, reducing latency.
There are some people speculating... See more
There are some people speculating... See more
muhtasham • Machine Learners Guide to Real World - 2️⃣ Concepts from Operating Systems That Found Their Way in LLMs
Since we launched ChatGPT Enterprise a few months ago, early customers have expressed the desire for even more customization that aligns with their business. GPTs answer this call by allowing you to create versions of ChatGPT for specific use cases, departments, or proprietary datasets. Early customers like Amgen, Bain, and Square are already... See more
Introducing GPTs
This could be a business opportunity: building GPTs for companies.
- Mistral AI shows a promising alternative to the GPT 3.5 model using prompt engineering .
- Mistral AI can be used where it requires high volume and faster processing time with very little cost .
- Mistral AI can be used as pre-filtering to GPT 4 to reduce cost i.e. can be used to filter down search results .
Mistral 7B is 187x cheaper compared to GPT-4
We generally lean towards picking more advanced commercial LLMs to quickly validate our ideas and obtain early feedback from users. Although they may be expensive, the general idea is that if problems can't be adequately solved with state-of-the-art foundational models like GPT-4, then more often than not, those problems may not be addressable... See more
.png?table=block&id=e222d02f-1d78-4887-8972-a958b1fbca65&spaceId=996f2b3b-deaa-4214-aedb-cbc914a1833e&width=1250&userId=&cache=v2)
