LLMs
When we deliver a model we make sure we don't reach X seconds of latency in our API. Before even going into performance of LLMs for classification, I can tell you that with the current available tech they are just infeasible.
Reply
reply
LinuxSpinach
•
5h ago
^ this. And especially classification as a task, because businesses don’t want to pay llm... See more
Reply
reply
LinuxSpinach
•
5h ago
^ this. And especially classification as a task, because businesses don’t want to pay llm... See more
r/MachineLearning - Reddit
We're doing NER on hundreds of millions of documents in a specialised niche. LLMs are terrible for this. Slow, expensive and horrifyingly inaccurate. Even with agents, pydantic parsing and the like. Supervised methods are the way to go. Hell, I'd take an old school rule based approach over LLMs for this.
- Multiple indices. Splitting the document corpus up into multiple indices and then routing queries based on some criteria. This means that the search is over a much smaller set of documents rather than the entire dataset. Again, it is not always useful, but it can be helpful for certain datasets. The same approach works with the LLMs themselves.
Matt Rickard • Improving RAG: Strategies
The xAI PromptIDE is an integrated development environment for prompt engineering and interpretability research. It accelerates prompt engineering through an SDK that allows implementing complex prompting techniques and rich analytics that visualize the network's outputs. We use it heavily in our continuous development of Grok.
PromptIDE
core components of Deep RL that enabled success like AlphaGo: self-play and look-ahead planning.
Self-play is the idea that an agent can improve its gameplay by playing against slightly different versions of itself because it’ll progressively encounter more challenging situations. In the space of LLMs, it is almost certain that the largest portion... See more
Self-play is the idea that an agent can improve its gameplay by playing against slightly different versions of itself because it’ll progressively encounter more challenging situations. In the space of LLMs, it is almost certain that the largest portion... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
These two components might be some of the most important ideas to improve all of AI.
Overview
Loki is our open-source solution designed to automate the process of verifying factuality. It provides a comprehensive pipeline for dissecting long texts into individual claims, assessing their worthiness for verification, generating queries for evidence search, crawling for evidence, and ultimately verifying the claims. This tool is... See more
Loki is our open-source solution designed to automate the process of verifying factuality. It provides a comprehensive pipeline for dissecting long texts into individual claims, assessing their worthiness for verification, generating queries for evidence search, crawling for evidence, and ultimately verifying the claims. This tool is... See more
Libr-AI • GitHub - Libr-AI/OpenFactVerification: Open-source solution designed to automate the process of verifying factuality
The new seed parameter enables reproducible outputs by making the model return consistent completions most of the time. This beta feature is useful for use cases such as replaying requests for debugging, writing more comprehensive unit tests, and generally having a higher degree of control over the model behavior. We at OpenAI have been using this... See more
New models and developer products announced at DevDay
Humans are bad at coming up with search queries. Humans are good at incrementally narrowing down options with a series of filters, and pointing where they want to go next. This seems obvious, but we keep building interfaces for finding information that look more like Google Search and less like a map.
All information tools have to give users some... See more
All information tools have to give users some... See more
thesephist.com • Navigate, don't search
When it comes to identifying where generative AI can make an impact, we dig into challenges that commonly:
- Involve analysis, interpretation, or review of unstructured content (e.g. text) at scale
- Require massive scaling that may be otherwise prohibitive due to limited resources
- Would be challenging for rules-based or traditional ML approaches
