LLMs
Mem0: The Memory Layer for Personalized AI
Mem0 provides a smart, self-improving memory layer for Large Language Models, enabling personalized AI experiences across applications.
Mem0 provides a smart, self-improving memory layer for Large Language Models, enabling personalized AI experiences across applications.
Note: The Mem0 repository now also includes the Embedchain project. We continue to maintain and support Embedchain ❤️. You can find the Embedchain codebase in the embedchai... See more
GitHub - mem0ai/mem0: The memory layer for Personalized AI
Menlo Ventures released a report on ‘The State of Generative AI in the Enterprise’ and found that adoption is trailing the hype. Details below:
Generative AI still represents less than 1% of cloud spend by surveyed enterprises, including just an 8% increase in 2023.
Safety and ROI continue to be prime concerns, and the tangible advantages of being... See more
Generative AI still represents less than 1% of cloud spend by surveyed enterprises, including just an 8% increase in 2023.
Safety and ROI continue to be prime concerns, and the tangible advantages of being... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Two ways for an AI company to protect itself from competition: (a) depend not just on AI but also deep domain knowledge about a particular field, (b) have a very close relationship with the end users.
Paul Graham • Tweet
The xAI PromptIDE is an integrated development environment for prompt engineering and interpretability research. It accelerates prompt engineering through an SDK that allows implementing complex prompting techniques and rich analytics that visualize the network's outputs. We use it heavily in our continuous development of Grok.
PromptIDE
Study finds RLHF reduces LLM creativity and output variety : A new research paper posted in /r/LocalLLaMA shows that while alignment techniques like RLHF reduce toxic and biased content, they also limit the creativity of large language models, even in contexts unrelated to safety.
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Overview
MaxText is a high performance , highly scalable , open-source LLM written in pure Python/Jax and targeting Google Cloud TPUs and GPUs for training and inference . MaxText achieves high MFUs and scales from single host to very large clusters while staying simple and "optimization-free" thanks to the power of Jax and the XLA compiler.
MaxText... See more
MaxText is a high performance , highly scalable , open-source LLM written in pure Python/Jax and targeting Google Cloud TPUs and GPUs for training and inference . MaxText achieves high MFUs and scales from single host to very large clusters while staying simple and "optimization-free" thanks to the power of Jax and the XLA compiler.
MaxText... See more
google • GitHub - google/maxtext: A simple, performant and scalable Jax LLM!
The Gemini API context caching feature is designed to reduce the cost of requests that contain repeat content with high input token counts.
When to use context caching
Context caching is particularly well suited to scenarios where a substantial initial context is referenced repeatedly by shorter requests. Consider using context caching for use cases... See more
When to use context caching
Context caching is particularly well suited to scenarios where a substantial initial context is referenced repeatedly by shorter requests. Consider using context caching for use cases... See more
Context caching guide | Google AI for Developers | Google for Developers
LLMTuner
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
promptslab • GitHub - promptslab/LLMtuner: Tune LLM in few lines of code
Clean & curate your data with LLMs
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
- Suite of tools for data processing using LLMs including categorization, transformation, and extraction
- Validation of LLM outputs
- Batch processing for token savings
- Retry logic with exponential backoff for handling rate limits and