LLMs
memary: Open-Source Longterm Memory for Autonomous Agents
memary demo
Why use memary?
Agents use LLMs that are currently constrained to finite context windows. memary overcomes this limitation by allowing your agents to store a large corpus of information in knowledge graphs, infer user knowledge through our memory modules, and only retrieve... See more
memary demo
Why use memary?
Agents use LLMs that are currently constrained to finite context windows. memary overcomes this limitation by allowing your agents to store a large corpus of information in knowledge graphs, infer user knowledge through our memory modules, and only retrieve... See more
GitHub - kingjulio8238/memary: Longterm Memory for Autonomous Agents.
Data
To train LLMs, you need data that is:
Large — Sufficiently large LMs require trillions of tokens.
Clean — Noisy data reduces performance.
Diverse — Data should come from different sources and different knowledge bases.
What does clean data look like?
You can de-duplicate data with simple heuristics. The most basic would be removing any exact duplicates... See more
Large — Sufficiently large LMs require trillions of tokens.
Clean — Noisy data reduces performance.
Diverse — Data should come from different sources and different knowledge bases.
What does clean data look like?
You can de-duplicate data with simple heuristics. The most basic would be removing any exact duplicates... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
The context size of the input is too small for when you want to analyse CSV's with 1000's of rows and embedding doesn't really work because it loses context.
r/LLMDevs - Reddit
“I think a lot of people obviously want to talk about the sexy kind of new consumer applications. I would tell you that I think that the earliest and most significant effect that AI is going to have on our company is actually going to be as it relates to our developer productivity. Some of the tools that we’re seeing are going to allow our devs to... See more
Adam Huda • The Transformative Power of Generative AI in Software Development: Lessons from Uber's Tech-Wide Hackathon
Fine-Tuning for LLM Research by AI Hero
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples... See more
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples... See more
GitHub - ai-hero/llm-research-fine-tuning
We went to OpenAI's office in San Francisco yesterday to ask them all the questions we had on Quivr (YC W24), here is what we learned:
1. Their office is super nice & you can eat damn good croissant in SF!
2. We can expect GPT 3.5 & 4 price to keep going down
3. A lot of people are using the Assistants API to build their use cases
4. It costs 2M$ to... See more
1. Their office is super nice & you can eat damn good croissant in SF!
2. We can expect GPT 3.5 & 4 price to keep going down
3. A lot of people are using the Assistants API to build their use cases
4. It costs 2M$ to... See more
Paul Venuto • feed updates
Unlike consumers, enterprises want control over how their data is used and shared with companies, including the providers of AI software. Enterprises have spent a lot effort in consolidating data from different sources and bringing them in-house (this article Partner integrations + System of Intelligence: Today’s deepest Moat by fellow Medium... See more
AI Startup Trends: Insights from Y Combinator’s Latest Batch
We consider these aspects of our problem:
- Latency : How fast does the system need to respond to user input?
- Task Complexity : What level of understanding is required from the LLM? Is the input context and prompt super domain-specific?
- Prompt Length : How much context needs to be provided for the LLM to do its task?
- Quality : What is the acceptable
.png?table=block&id=b4e186f9-aa38-4fce-b32e-8fdd8fc746ce&spaceId=996f2b3b-deaa-4214-aedb-cbc914a1833e&width=1260&userId=&cache=v2)