LLMs
We identified 30 types of tasks that UX professionals used generative AI tools for in their work. We grouped these tasks under four roles: content editor, research assistant, ideation partner, or design assistant.
- Content editor : Generating and editing text, from microcopy to social media posts, based on specifications or copy given by UX
Mingjin Zhang • AI as a UX Assistant
- You have access to a proprietary asset (like data) that others don’t have easy access to. In our “write job postings” example, perhaps you have a corpus of thousands of job postings including some outcome scores (as to how well they did). You could use this data to create better job postings. Others don’t have ready access to this data. Note: The
Dharmesh Shah • How To Build a Defensible A.I. Startup
Protecting LLM products:
(1) Is hard to bootstrap. This already hints to existing customers or you need to get a bunch of your customers to co-develop (insurance model → companies pooling their data to solve a problem they all have). This runs into a bunch of issues: competitive drive of the companies, data privacy and security.
(2) Reserved for existing companies. This is the co-pilot model.
(3) This might be the most sustainable one, but it is also the hardest one. I have not seen anything in that direction yet besides OpenAI.
What’s the best way for an end user to organize and explore millions of latent space features?
I’ve found tens of thousands of interpretable features in my experiments, and frontier labs have demonstrated results with a thousand times more features in production-scale models. No doubt, as interpretability techniques advance, we’ll see feature maps... See more
I’ve found tens of thousands of interpretable features in my experiments, and frontier labs have demonstrated results with a thousand times more features in production-scale models. No doubt, as interpretability techniques advance, we’ll see feature maps... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Since we launched ChatGPT Enterprise a few months ago, early customers have expressed the desire for even more customization that aligns with their business. GPTs answer this call by allowing you to create versions of ChatGPT for specific use cases, departments, or proprietary datasets. Early customers like Amgen, Bain, and Square are already... See more
Introducing GPTs
This could be a business opportunity: building GPTs for companies.
In the simplest form, we can use the model’s detection confidence to determine a score. But even here there are quite a few options to choose from:
- Lowest confidence - the score is the lowest confidence of all detected objects
- Average confidence - average of all confidences of detected objects
- Minimizing confidence delta - difference between
Active Learning with Domain Experts, a Case Study in Machine Learning
What data to label?
MLServer aims to provide an easy way to start serving your machine learning models through a REST and gRPC interface, fully compliant with KFServing's V2 Dataplane spec. Watch a quick video introducing the project here.
- Multi-model serving, letting users run multiple models within the same process.
- Ability to run inference in parallel for vertical
GitHub - SeldonIO/MLServer: An inference server for your machine learning models, including support for multiple frameworks, multi-model serving and more
Two ways for an AI company to protect itself from competition: (a) depend not just on AI but also deep domain knowledge about a particular field, (b) have a very close relationship with the end users.
Paul Graham • Tweet
pair-preference-model-LLaMA3-8B by RLHFlow: Really strong reward model, trained to take in two inputs at once, which is the top open reward model on RewardBench (beating one of Cohere’s).
DeepSeek-V2 by deepseek-ai (21B active, 236B total param.): Another strong MoE base model from the DeepSeek team. Some people are questioning the very high MMLU... See more
DeepSeek-V2 by deepseek-ai (21B active, 236B total param.): Another strong MoE base model from the DeepSeek team. Some people are questioning the very high MMLU... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
📦 Service Deployment - Ray Serve (https://lnkd.in/eAV-Y6RN)
🧰 Data Transformation - Ray Data (https://lnkd.in/e7wYmenc)
🔌 LLM Integration - AIConfig (https://lnkd.in/esvH5NQa)
🗄 Vector Database - Weaviate (https://weaviate.io/)
📚 Supervised LLM Fine-Tuning - HuggingFace TLR (https://lnkd.in/e8_QYF-P)
📈 LLM Observability - Weights & Biases Traces (https... See more
🧰 Data Transformation - Ray Data (https://lnkd.in/e7wYmenc)
🔌 LLM Integration - AIConfig (https://lnkd.in/esvH5NQa)
🗄 Vector Database - Weaviate (https://weaviate.io/)
📚 Supervised LLM Fine-Tuning - HuggingFace TLR (https://lnkd.in/e8_QYF-P)
📈 LLM Observability - Weights & Biases Traces (https... See more