The Many Ways to Deploy a Model | Outerbounds
Top considerations when choosing foundation models
Accuracy
Cost
Latency
Privacy
Top challenges when deploying production AI
Serving cost
Evaluation
Infra reliability
Model quality
Accuracy
Cost
Latency
Privacy
Top challenges when deploying production AI
Serving cost
Evaluation
Infra reliability
Model quality
Notion – The all-in-one workspace for your notes, tasks, wikis, and databases.
In general, I see LLMs to be used in two broad categories: data processing, which is more of a worker use-cases, where the latency isn't the biggest issue but rather quality, and in user-interactions, where latency is a big factor. I think for the faster case a faster fallback is necessary. Or you escalate upwards, you first rely on a smaller more... See more
Discord - A New Way to Chat with Friends & Communities
A solution is to self-host an open-sourced or custom fine-tuned LLM. Opting for a self-hosted model can reduce costs dramatically - but with additional development time, maintenance overhead, and possible performance implications. Considering self-hosted solutions requires weighing these different trade-offs carefully.