
Reasoning skills of large language models are often overestimated

Deep-learning systems are outstanding at interpolating between specific examples they have seen before, but frequently stumble when confronted with novelty.
Gary Marcus • Deep Learning Is Hitting a Wall
LeCun points to four essential characteristics of human intelligence that current AI systems, including LLMs, can’t replicate: reasoning, planning, persistent memory, and understanding the physical world. He stresses that LLMs’ reliance on textual data severely limits their understanding of reality: “We’re easily fooled into thinking they are intel... See more
Azeem Azhar • 🧠 AI’s $100bn question: The scaling ceiling
The question of whether LLMs can reason is, in many ways, the wrong question. The more interesting question is whether they are limited to memorization / interpolative retrieval, or whether they can adapt to novelty beyond what they know. (They can't, at least until you start doing active inference, or using them in a search loop, etc.)
There are ... See more
It is very important to bear in mind that this is what large language models really do. Suppose we give an LLM the prompt “The first person to walk on the Moon was ”, and suppose it responds with “Neil Armstrong”. What are we really asking here? In an important sense, we are not really asking who was the first person to walk on the Moon. What we ar
... See more