吴恩达老师写的这篇《No Work for CodersCould coding assistants take over software development?》还比较客观,简单来说就是还取代不了,甚至还能增强开发者的能力:
1. AI 自动化会执行一些编码任务,但并不会取代整个编程职业
2. AI 工具在执行任务以及按照模板生成代码方面表现出色,但还不能做到完全自动化,并且增强了开发者的核心技能
3. 将业务需求转化为产品设计和系统设计、与同事协作,这些事情 AI 还取代不了——至少目前如此。
吴老师给出的建议:拥抱 AI,拥抱 AI 编程助手,不应该抵触它们。
这些 AI 工具不仅能帮你自动化任务,还能帮助你快速学习、提升你解决问题的能力。
那些既掌握了编程基础知识,又能熟练... See more
深夜Coding有感,前几年在腾讯、字节等大厂的时候,我三五天写的几个函数,现在用Claude可能十几分钟就写完了,质量还更好。
信息传递的过程是会失真的,100人的技术团队可能会因为沟通和交流问题降低很多效率,而小团队甚至是个人开发者,失真率很低,效率反而出奇的高,这种效率的提升甚至可能将原本需要三五个月的项目周期缩短到几天[捂脸]
有趣的是,其实AI加持下的前端工作反而比后端、数据分析还麻烦一点,用户交互、视觉设计、debug这方面都是LLM不擅长的
而曾经的researcher如果有一个idea,在初始阶段往往也是个人探索为主,验证可行性之后可能才会对外传播,因为哪怕是面对同门,也要防住不必要的麻烦发生,不要去考验人性。现在AI可以作为researcher的对话伙伴,帮助他们从一个小的... See more
从小黄鸭到 AI 助手:程序员的新时代调试秘诀
今天在调试一个麻烦的 Bug,主要是代码不是我写的,要搞清楚原始代码的思路并找出问题来有点吃力,于是将相关代码都扔给 o1 preview,并尝试描述我的问题。前面几轮 o1 没能很好的理解我的意思,经过几轮修改后很快它能抓住重点,指出了潜在问题,基于它指出的可能问题,我后续更新了一些信息,马上它给出了一个修改方案,测试后居然解决了!
其实在和它互动过程中,通过向它描述问题,以及它给我指出的可能问题,我已经快接近解决方案了,即使它没能给出方案,也已经帮我理清楚了代码的结构。这让我想起著名的“小黄鸭调试法”(Rubber Duck Debugging)。
很多程序员的桌上可能都曾经摆着一只小黄鸭,看起来不过就是那种普普通通的橡皮玩具。在代码... See more
Generative AI can automate simple tasks
By automating simpler, tedious tasks (generating boilerplate code, fixing linter errors, generating unit tests, etc.), generative AI can help engineers focus on more complex tasks.
Generative AI can improve quality & reliability
Since generative AI models are trained on large codebases, they have the poten... See more
By automating simpler, tedious tasks (generating boilerplate code, fixing linter errors, generating unit tests, etc.), generative AI can help engineers focus on more complex tasks.
Generative AI can improve quality & reliability
Since generative AI models are trained on large codebases, they have the poten... See more
Adam Huda • The Transformative Power of Generative AI in Software Development: Lessons from Uber's Tech-Wide Hackathon
Nicolay Gerold added
Of course, the reality is more complex, and it’s better to think in terms of automation and autocomplete than vertical software and replacing designers, but whole layers of grunt work will be removed, just as they were with GUIs and SQL.
Benedict Evans • Benedict's Newsletter: No. 547
Jimmy Cerone added
Not sure if this is positive, but the most coherent take on AI I’ve seen so far. Realistic but not panicked.
how can you take the knowledge work that someone is doing and use AI to help them be dramatically more productive at doing that particular flavor of cognitive work? In our observation with developers, more than anything else, AI helps keep them in flow state longer than they otherwise would. Rather than hitting a blocker when you’re writing a chunk... See more
Sarah Wang • What Builders Talk About When They Talk About AI | Andreessen Horowitz
Nicolay Gerold added
Been receiving lots of questions about this from folks who expect AI engineers to result in a wave of mass unemployment.
I think the crux of the question is whether there can be such a thing as "too much code" in the world.
As farming productivity skyrocketed in the last few… Show more
phoebe added
The need for better AI or LLM-specific infrastructure, along with the host of problems that come with non-deterministic of LLMs, means that there’s more software work ahead of us, not less. Abstraction layers like LLMs create more possibilities and thus, more work.
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Nicolay Gerold added