小米技术
mp.weixin.qq.com
Related
Highlights
,生成的动作在自然度和灵活性
小米技术
•
Article
受通信传输和机械传动的影响,从机器人发出控制指令到真正执行指令之间存在延时,且控制信号存在噪声
小米技术
•
Article
基于物理引擎的仿真器,如Pybullet、Mujoco、Isaac Gym等,为获取大量机器人交互数据提供了一个有效的方式。研究者们可以先在仿真器中进行训练,之后再迁移到真实机器人上。
小米技术
•
Article
强化学习是机器学习的一个分支。与监督学习不同,在强化学习中,智能体通过与环境不断交互进行试错学习,其目标是最大化累积回报。
小米技术
•
Article
它旨在将仿真环境中 (源域) 训练得到的策略在现实环境中 (目标域) 进行再适应。这种方法背后的假设是,不同域之间具有相同的特征,智能体在一个域中学习得到的行为和特征能够帮助其在另一个域中学习。
小米技术
•
Article
整个sim-to-real过程如图4所示,共分为四步:
(1)识别出机器人的物理参数,并对机器人进行刚体运动学/动力学建模;
(2)收集真实的关节电机执行数据,训练一个Actuator Net;
(3)在仿真中,利用Actuator Net建模关节电机,并结合第一步中的刚体运动学/动力学建模,进行强化学习;
(4)将第3步中训练得到的策略部署到真机上。
小米技术
•
Article