GitHub - predibase/lorax: Multi-LoRA inference server that scales to 1000s of fine-tuned LLMs
Fine-Tuning for LLM Research by AI Hero
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples pr... See more
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples pr... See more
GitHub - ai-hero/llm-research-fine-tuning
GitHub - circlemind-ai/fast-graphrag: RAG that intelligently adapts to your use case, data, and queries
Charles Dickensgithub.com
LLM-PowerHouse: A Curated Guide for Large Language Models with Custom Training and Inferencing
Welcome to LLM-PowerHouse, your ultimate resource for unleashing the full potential of Large Language Models (LLMs) with custom training and inferencing. This GitHub repository is a comprehensive and curated guide designed to empower developers, researche... See more
Welcome to LLM-PowerHouse, your ultimate resource for unleashing the full potential of Large Language Models (LLMs) with custom training and inferencing. This GitHub repository is a comprehensive and curated guide designed to empower developers, researche... See more
ghimiresunil • GitHub - ghimiresunil/LLM-PowerHouse-A-Curated-Guide-for-Large-Language-Models-with-Custom-Training-and-Inferencing: LLM-PowerHouse: Unleash LLMs' potential through curated tutorials, best practices, and ready-to-use code for custom training and inferencing.
Data science teams can use Baseten to efficiently serve, integrate, design, and ship their custom machine learning models with ease. A key benefit of Baseten is that it collapses the innovation cycle for ML apps, resulting in cheaper experimentation and greater success. It unblocks ML efforts currently bottlenecked by infrastructure, frontend, and ... See more
Jason Risch • Self-Serve Apps for ML Teams | Greylock
Lobe
lobe.aiMLServer aims to provide an easy way to start serving your machine learning models through a REST and gRPC interface, fully compliant with KFServing's V2 Dataplane spec. Watch a quick video introducing the project here.
- Multi-model serving, letting users run multiple models within the same process.
- Ability to run inference in parallel for vertical sc