Sublime
An inspiration engine for ideas
But the networks themselves were still severely limited in what they could do. Accurate results to complex problems required many layers of artificial neurons, but researchers hadn’t found a way to efficiently train those layers as they were added. Deep learning’s big technical break finally arrived in the mid-2000s, when leading researcher Geoffre
... See moreKai-Fu Lee • AI Superpowers: China, Silicon Valley, and the New World Order
Depuis, il a théorisé son idée de l’hybridation des intelligences humaine et artificielle en utilisant l’image du centaure, produit de ces deux intelligences. Je le rejoins pleinement : l’intelligence collective, dès lors qu’on sait la catalyser et la canaliser – y compris, nous venons de le voir, avec des très jeunes –, renforcée par la puissance
... See moreFrançois Taddei • Apprendre au XXIe siècle (French Edition)
‘Learning representations by back-propagating errors’, written by two cognitive scientists from the University of California San Diego, David Rumelhart and Ronald Williams, and a computer scientist from Carnegie Mellon, Geoffrey Hinton,
Grace Lindsay • Models of the Mind
