LLMs
- Query the RAG anyway and let the LLM itself chose whether to use the the RAG context or its built in knowledge
- Query the RAG but only provide the result to the LLM if it meets some level of relevancy (ie embedding distance) to the question
- Run the LLM both on it's own and with the RAG response, use a heuristic (or another LLM) to pick the best answer
r/LocalLLaMA - Reddit
However, a key risk with several of these startups is the potential lack of a long-term moat. It is difficult to read too much into it given the stage of these startups and the limited public information available but it’s not difficult to poke holes at their long term defensibility. For example:
- If a startup is built on the premise of taking base
AI Startup Trends: Insights from Y Combinator’s Latest Batch
To train LLMs, you need data that is:
Large — Sufficiently large LMs require trillions of tokens.
Clean — Noisy data reduces performance.
Diverse — Data should come from different sources and different knowledge bases.
What does clean data look like?
You can de-duplicate data with simple heuristics. The most basic would be removing any exact duplicates... See more
Large — Sufficiently large LMs require trillions of tokens.
Clean — Noisy data reduces performance.
Diverse — Data should come from different sources and different knowledge bases.
What does clean data look like?
You can de-duplicate data with simple heuristics. The most basic would be removing any exact duplicates... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
LLMTuner
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
promptslab • GitHub - promptslab/LLMtuner: Tune LLM in few lines of code
First time here? Go to our setup guide
Features
Features
- 🤖 Multiple model integrations: OpenAI, transformers, llama.cpp, exllama2, mamba
- 🖍️ Simple and powerful prompting primitives based on the Jinja templating engine
- 🚄 Multiple choices, type constraints and dynamic stopping
- ⚡ Fast regex-structured generation
- 🔥 Fast JSON generation following a JSON schema
outlines-dev • GitHub - outlines-dev/outlines: Neuro Symbolic Text Generation
Here's my read on the situation:
* The TAM is massive, still so many businesses trying to figure out AI
* If you do deployments you’ll need to spend a of time hand holding clients through scoping projects (not unlike other dev works) since the material is so new
* Lot’s of opportunity in education
* The hard part isn’t the expertise, it’s distribution... See more
* The TAM is massive, still so many businesses trying to figure out AI
* If you do deployments you’ll need to spend a of time hand holding clients through scoping projects (not unlike other dev works) since the material is so new
* Lot’s of opportunity in education
* The hard part isn’t the expertise, it’s distribution... See more
Greg Kamradt • Tweet
a couple of the top of my head:
- LLM in the loop with preference optimization
- synthetic data generation
- cross modality "distillation" / dictionary remapping
- constrained decoding
r/MachineLearning - Reddit
Additional LLM paradigms beyond RAG
Overview
Loki is our open-source solution designed to automate the process of verifying factuality. It provides a comprehensive pipeline for dissecting long texts into individual claims, assessing their worthiness for verification, generating queries for evidence search, crawling for evidence, and ultimately verifying the claims. This tool is... See more
Loki is our open-source solution designed to automate the process of verifying factuality. It provides a comprehensive pipeline for dissecting long texts into individual claims, assessing their worthiness for verification, generating queries for evidence search, crawling for evidence, and ultimately verifying the claims. This tool is... See more