LLMs
Clean & curate your data with LLMs
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
databonsai is a Python library that uses LLMs to perform data cleaning tasks.
Features
- Suite of tools for data processing using LLMs including categorization, transformation, and extraction
- Validation of LLM outputs
- Batch processing for token savings
- Retry logic with exponential backoff for handling rate limits and
databonsai • GitHub - databonsai/databonsai: clean & curate your data with LLMs.
Today, we’re releasing the Assistants API, our first step towards helping developers build agent-like experiences within their own applications. An assistant is a purpose-built AI that has specific instructions, leverages extra knowledge, and can call models and tools to perform tasks. The new Assistants API provides new capabilities such as Code... See more
New models and developer products announced at DevDay
Here's my read on the situation:
* The TAM is massive, still so many businesses trying to figure out AI
* If you do deployments you’ll need to spend a of time hand holding clients through scoping projects (not unlike other dev works) since the material is so new
* Lot’s of opportunity in education
* The hard part isn’t the expertise, it’s distribution... See more
* The TAM is massive, still so many businesses trying to figure out AI
* If you do deployments you’ll need to spend a of time hand holding clients through scoping projects (not unlike other dev works) since the material is so new
* Lot’s of opportunity in education
* The hard part isn’t the expertise, it’s distribution... See more
Greg Kamradt • Tweet
Menlo Ventures released a report on ‘The State of Generative AI in the Enterprise’ and found that adoption is trailing the hype. Details below:
Generative AI still represents less than 1% of cloud spend by surveyed enterprises, including just an 8% increase in 2023.
Safety and ROI continue to be prime concerns, and the tangible advantages of being... See more
Generative AI still represents less than 1% of cloud spend by surveyed enterprises, including just an 8% increase in 2023.
Safety and ROI continue to be prime concerns, and the tangible advantages of being... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
When it comes to identifying where generative AI can make an impact, we dig into challenges that commonly:
- Involve analysis, interpretation, or review of unstructured content (e.g. text) at scale
- Require massive scaling that may be otherwise prohibitive due to limited resources
- Would be challenging for rules-based or traditional ML approaches
Developing Rapidly with Generative AI
MLServer aims to provide an easy way to start serving your machine learning models through a REST and gRPC interface, fully compliant with KFServing's V2 Dataplane spec. Watch a quick video introducing the project here.
- Multi-model serving, letting users run multiple models within the same process.
- Ability to run inference in parallel for vertical
GitHub - SeldonIO/MLServer: An inference server for your machine learning models, including support for multiple frameworks, multi-model serving and more
A solution is to self-host an open-sourced or custom fine-tuned LLM. Opting for a self-hosted model can reduce costs dramatically - but with additional development time, maintenance overhead, and possible performance implications. Considering self-hosted solutions requires weighing these different trade-offs carefully.

.png?table=block&id=e2eaaa6a-a9a8-4f09-a88e-888ba717d58d&spaceId=996f2b3b-deaa-4214-aedb-cbc914a1833e&width=1200&userId=&cache=v2)