LLMs
- Traditional AI - The most secure, understandable, and performant. However, Good implementations of traditional AI require that we define the rules behind the system, which makes it unfeasible for many of the use cases that the other 2 techniques thrive on.
- Supervised Machine Learning- Middle of the road b/w AI and Deep Learning. Good when we have
Devansh • How to Pick between Traditional AI, Supervised Machine Learning, and Deep Learning [Thoughts]
Where would I add generative AI? Generative AI has the ease of accessibility of traditional AI, where people think it is understandable, but it does not have that feature in itself. It also has the opaque and costly nature of DL. Many companies are at the moment rushing into developing things with generative AI without having any prior foundation in AI and any processes set up to manage it: data ops, devops, …
Traditional AI forces you to think about how something works, understand the system, and then define the rules for it. ML lets you use features and feature importance to shortcut some. Deep Learning allows you to brute force it. Generative AI allows you to brute force without any background in DL.
A dead simple way of OCR-ing a document for AI ingestion. Documents are meant to be a visual representation after all. With weird layouts, tables, charts, etc. The vision models just make sense!
The general logic:
- Pass in a PDF (URL or file buffer)
- Turn the PDF into a series of images
- Pass each image to GPT and ask nicely for Markdown
- Aggregat
Tyler Maran • GitHub - getomni-ai/zerox: Zero shot pdf OCR with gpt-4o-mini
- Why CrewAI
- Getting Started
- Key Features
- Examples
- Local Open Source Models
- CrewAI x AutoGen x ChatDev
- Contribution
- 💬 CrewAI Discord Community
- Hire Consulting
- Licen
joaomdmoura • GitHub - joaomdmoura/crewAI: Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
🧰 Data Transformation - Ray Data (https://lnkd.in/e7wYmenc)
🔌 LLM Integration - AIConfig (https://lnkd.in/esvH5NQa)
🗄 Vector Database - Weaviate (https://weaviate.io/)
📚 Supervised LLM Fine-Tuning - HuggingFace TLR (https://lnkd.in/e8_QYF-P)
📈 LLM Observability - Weights & Biases Tra... See more
Feed | LinkedIn
* The TAM is massive, still so many businesses trying to figure out AI
* If you do deployments you’ll need to spend a of time hand holding clients through scoping projects (not unlike other dev works) since the material is so new
* Lot’s of opportunity in education
* The hard part isn’t the expertise, it’s distribution ... See more
Greg Kamradt • Tweet
- If a startup is built on the premise of taking base L
AI Startup Trends: Insights from Y Combinator’s Latest Batch
- You have access to a proprietary asset (like data) that others don’t have easy access to. In our “write job postings” example, perhaps you have a corpus of thousands of job postings including some outcome scores (as to how well they did). You could use this data to create better job postings. Others don’t have ready access to this data. Note: The a
Dharmesh Shah • How To Build a Defensible A.I. Startup
Protecting LLM products:
(1) Is hard to bootstrap. This already hints to existing customers or you need to get a bunch of your customers to co-develop (insurance model → companies pooling their data to solve a problem they all have). This runs into a bunch of issues: competitive drive of the companies, data privacy and security.
(2) Reserved for existing companies. This is the co-pilot model.
(3) This might be the most sustainable one, but it is also the hardest one. I have not seen anything in that direction yet besides OpenAI.
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Copilots don’t crea... See more