LLMs
When it comes to identifying where generative AI can make an impact, we dig into challenges that commonly:
- Involve analysis, interpretation, or review of unstructured content (e.g. text) at scale
- Require massive scaling that may be otherwise prohibitive due to limited resources
- Would be challenging for rules-based or traditional ML approaches
Developing Rapidly with Generative AI
What’s the best way for an end user to organize and explore millions of latent space features?
I’ve found tens of thousands of interpretable features in my experiments, and frontier labs have demonstrated results with a thousand times more features in production-scale models. No doubt, as interpretability techniques advance, we’ll see feature maps... See more
I’ve found tens of thousands of interpretable features in my experiments, and frontier labs have demonstrated results with a thousand times more features in production-scale models. No doubt, as interpretability techniques advance, we’ll see feature maps... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
“I think a lot of people obviously want to talk about the sexy kind of new consumer applications. I would tell you that I think that the earliest and most significant effect that AI is going to have on our company is actually going to be as it relates to our developer productivity. Some of the tools that we’re seeing are going to allow our devs to... See more
Adam Huda • The Transformative Power of Generative AI in Software Development: Lessons from Uber's Tech-Wide Hackathon
a couple of the top of my head:
- LLM in the loop with preference optimization
- synthetic data generation
- cross modality "distillation" / dictionary remapping
- constrained decoding
r/MachineLearning - Reddit
Additional LLM paradigms beyond RAG
The need for better AI or LLM-specific infrastructure, along with the host of problems that come with non-deterministic of LLMs, means that there’s more software work ahead of us, not less. Abstraction layers like LLMs create more possibilities and thus, more work.
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Is this a good thing or a bad thing? I’m not sure.
A great example of this is frontend... See more
Shortwave — rajhesh.panchanadhan@gmail.com [Gmail alternative]
Ensuring availability during peak traffic by maintaining all GPU instance types could lead to prohibitively high costs. To avoid the financial strain of idle instances, we implemented a “standby instances” mechanism. Rather than preparing for the maximum potential load, we maintained a calculated number of standby instances that match the... See more
Sean Sheng • Scaling AI Models Like You Mean It
Amplify Partners was running a survey among 800+ AI engineers to bring transparency to the AI Engineering space. The report is concise, yet it provides a wealth of insights into the technologies and methods employed by companies for the implementation of AI products.
Highlights
👉 Top AI use cases are code intelligence, data extraction and workflow... See more
Highlights
👉 Top AI use cases are code intelligence, data extraction and workflow... See more
.png?table=block&id=b4e186f9-aa38-4fce-b32e-8fdd8fc746ce&spaceId=996f2b3b-deaa-4214-aedb-cbc914a1833e&width=1260&userId=&cache=v2)
