GitHub - unslothai/unsloth: 5X faster 50% less memory LLM finetuning
slowllama
Fine-tune Llama2 and CodeLLama models, including 70B/35B on Apple M1/M2 devices (for example, Macbook Air or Mac Mini) or consumer nVidia GPUs.
slowllama is not using any quantization. Instead, it offloads parts of model to SSD or main memory on both forward/backward passes. In contrast with training large models from scratch (unattainable... See more
Fine-tune Llama2 and CodeLLama models, including 70B/35B on Apple M1/M2 devices (for example, Macbook Air or Mac Mini) or consumer nVidia GPUs.
slowllama is not using any quantization. Instead, it offloads parts of model to SSD or main memory on both forward/backward passes. In contrast with training large models from scratch (unattainable... See more
okuvshynov • GitHub - okuvshynov/slowllama: Finetune llama2-70b and codellama on MacBook Air without quantization
Nicolay Gerold added
GitHub - arthur-ai/bench: A tool for evaluating LLMs
GitHub - arthur-ai/bench: A tool for evaluating LLMs
BA Builder added
TL;DR
LLMLingua utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
... See more
LLMLingua utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
... See more
microsoft • GitHub - microsoft/LLMLingua: To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.
Nicolay Gerold added
⚡ LitGPT
Pretrain, finetune, evaluate, and deploy 20+ LLMs on your own data
Uses the latest state-of-the-art techniques:
✅ flash attention ✅ fp4/8/16/32 ✅ LoRA, QLoRA, Adapter (v1, v2) ✅ FSDP ✅ 1-1000+ GPUs/TPUs
Lightning AI • Models • Quick start • Inference • Finetune • Pretrain • Deploy • Features • Training recipes (YAML)
Finetune, pretrain and d... See more
Pretrain, finetune, evaluate, and deploy 20+ LLMs on your own data
Uses the latest state-of-the-art techniques:
✅ flash attention ✅ fp4/8/16/32 ✅ LoRA, QLoRA, Adapter (v1, v2) ✅ FSDP ✅ 1-1000+ GPUs/TPUs
Lightning AI • Models • Quick start • Inference • Finetune • Pretrain • Deploy • Features • Training recipes (YAML)
Finetune, pretrain and d... See more
Lightning-AI • GitHub - Lightning-AI/litgpt: Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.
Nicolay Gerold added
Ollama
ollama.comStamati and added
LLMTuner
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
LLMTuner: Fine-Tune Llama, Whisper, and other LLMs with best practices like LoRA, QLoRA, through a sleek, scikit-learn-inspired interface.
promptslab • GitHub - promptslab/LLMtuner: Tune LLM in few lines of code
Nicolay Gerold added
Fine-Tuning for LLM Research by AI Hero
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples pr... See more
This repo contains the code that will be run inside the container. Alternatively, this code can also be run natively. The container is built and pushed to the repo using Github actions (see below). You can launch the fine tuning job using the examples in the https://github.com/ai-hero/llm-research-examples pr... See more
GitHub - ai-hero/llm-research-fine-tuning
Nicolay Gerold added
promptfoo is a tool for testing and evaluating LLM output quality.... See more
With promptfoo, you can:
Systematically test prompts & models against predefined test cases
Evaluate quality and catch regressions by comparing LLM outputs side-by-side
Speed up evaluations with caching and concurrency
Score outputs automatically by defining test cases
Use as a
Testing framework for LLM Part
Nicolay Gerold added